National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Adaptace centrálního nervového systému na chybění acetylcholinesterázy
Farár, Vladimír ; Mysliveček, Jaromír (advisor) ; Jakubík, Jan (referee) ; Cordero-Erausquin, Matilde (referee)
Acetylcholinesterase (AChE) effectively hydrolyzes acetylcholine (ACh). The inhibition of AChE is generally lethal and mice without AChE in all tissues (AChE KO) have severe impairments. In the brain, AChE is anchored in the plasma membrane by proline-rich membrane anchor (PRiMA), while in the muscles, AChE is anchored by collagen Q (ColQ) in the basal lamina. We report here that the PRiMA KO mice, in which AChE is essentially eliminated in the brain, show very little changes in behavior despite an excess of ACh in the brain and adaptation of ACh receptors comparable to those seen in AChE KO mice. Moreover, when AChE cannot interact with ColQ and PRiMA, the phenotype resembles that of AChE KO mice, but the biochemical changes in the brain are similar to those in PRiMA KO mice. PRiMA KO mice also differ from other AChE-deficit mice strains in their responses to AChE inhibitor. Our results suggest that AChE in the peripheral tissues is the major target of AChE inhibitors and AChE absence in the peripheral tissues is the leading cause of the phenotype of AChE KO mice.
Adaptace centrálního nervového systému na chybění acetylcholinesterázy
Farár, Vladimír ; Mysliveček, Jaromír (advisor) ; Jakubík, Jan (referee) ; Cordero-Erausquin, Matilde (referee)
Acetylcholinesterase (AChE) effectively hydrolyzes acetylcholine (ACh). The inhibition of AChE is generally lethal and mice without AChE in all tissues (AChE KO) have severe impairments. In the brain, AChE is anchored in the plasma membrane by proline-rich membrane anchor (PRiMA), while in the muscles, AChE is anchored by collagen Q (ColQ) in the basal lamina. We report here that the PRiMA KO mice, in which AChE is essentially eliminated in the brain, show very little changes in behavior despite an excess of ACh in the brain and adaptation of ACh receptors comparable to those seen in AChE KO mice. Moreover, when AChE cannot interact with ColQ and PRiMA, the phenotype resembles that of AChE KO mice, but the biochemical changes in the brain are similar to those in PRiMA KO mice. PRiMA KO mice also differ from other AChE-deficit mice strains in their responses to AChE inhibitor. Our results suggest that AChE in the peripheral tissues is the major target of AChE inhibitors and AChE absence in the peripheral tissues is the leading cause of the phenotype of AChE KO mice.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.